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1. Introduction

In the neurophysiological literature, it has been well recognized that

a neuron cell is spatially extended and hence that a realistic description

of neuronal activity would have to take into account synaptic inputs that

occur randomly in time and at different locations on the neuron's surface

[( 17 )1. In this paper, we shall develop a stochastic model to describe

the evolution of the membrane potential along the surface membrane of a nerve

cell. We will regard this potential as a stochastic process or random field.

indexed both by time t>O and by location xeX where X will represent the sur-

face membrane of a neuron. Our work is based on and extends the work of

several authors, including Wan and Tuckwell, Riccardi and Sacerdote, J. Walsh,

and G. Kallianpur [ 21, 18, 20, 14]. In all of these earlier works the

neuronal membrane X was represented by a single point [ 18 and 14

or by an interval [O,b] of the real line. The latter model - the only spatial

model treated stochastically so far as we know - has been considered by Wan and

Tuckwell and analyzed probabilistically by Walsh. The deterministic back-

ground for their work is core-conductor theory and the one-dimensional cable

equation which is adequate for situations which involve "longitudinal dis-

tances that are many times the cylinder diameter". Other choices of X are

more realistic if one is concerned with locations "close to point sources

of current and in problems where the distribution of potential in a large

4'. extracellular volume is of primary importance". 1 18, p. 42, also p.Sb.

In the present work, the form of X will be quite general; for example,

it can be any smooth, compact, d-dimensional manifold. The case d=O or I

includes the work of the previous authors; d=2 models the surface of a neuron

(useful also in the study of impulses originating at or near the soma) and

d-3 is suitable for modelling the interior of organs such as the heart.
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* 1.2

Before discussing the models and results it might be of interest to give

a brief, though simplistic, description of the physiology of neuronal acti-

vity (see 1171).

A neuron is a cell whose principal function is to transmit information

along its considerable length, which often exceeds one meter. "Information"

is represented by changing amplitudes of electrical voltage potentials across

the cell wall. A quiescent neuron will exhibit a resting potential of about

60 mV, the inside more negative than the outside, for reasons described below.

3, Under certain circumstances the potential voltage in the dendritic tree will

rise above a threshold point at which positive feedback causes a pulse of

up to 100 m to appear at the base of the dendritic tree; this pulse is trans-

mitted rapidly along the body and down the axon of the cell until it reaches

the so-called "pre-synaptic terminals" at the other end of the neuron. Here

the pulse causes tiny vesicles filled with chemicals called "neurotransmitters"

to empty out into the narrow gaps between the presynaptic terminals and the

dendrites of other neurons. When these chemicals diffuse across the gap

and hit the neighboring neurons' dendrites, they may cause the potential

voltage in these dendrites to rise above a threshold point and initiate another

pulse.

The molecules which make up neuronal cell walls (and all other living

membranes) are shaped a little like lollypops with two sticks. The candy end

is a phosphoric acid whose electrical charge is unequally distributed, or

"polar". This allows it to mix with water molecules (which are also polar)

and with ions such as sodium, potassium, and chloride. The two lollypop

'C. "sticks" are long fatty acid chains which are not polar; they dissolve

readily in oil or fats, but not in water. These cells tend to arrange them-

selves so that their fatty tails meet only other fatty substances and only

C,.
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their polar ends directly meet water molecules and dissolved ions; one quite

stable such formation is a two-molecule-thick membrane, with all the fatty

*9' tails in the middle. This two-layer thick membrane of molecules which are

V, half phosphoric acid and half fatty lipid are called "phospholipid bilayers".

These bilayers make extraordinary insulators and, since they are so thin,

a extraordinary capacitors. If for some reason a charge imbalance should arise

so that one side of the membrane is more positive and the other side more

* negative, the insulating property of the layer would tend to maintain that

imbalance and the resulting voltage potential.

".. In fact nearly all living membranes exhibit such a charge imbalance and

resulting voltage potential, due to their selective permeability to the pas-

sage of various ions. Large protein molecules stick through the lipid bilayer;

when several of these come together they can form a passage through the layer

like the staves of a barrel and let one or another species of ion pass through

the membrane. Different proteins have the ability to pass different species

of ion selectively- say, allowing potassium to pass but not sodium - and

this gives rise to the electrical potential. In the cell at rest potassium

-is about 30 times more plentiful inside the cells than outside, while sodium

is about 10 times more plentiful outside than in. This imbalance is maintained

by the ATP sodium-potassium pump, which acts like a revolving door. It active-

ly trades Na and K to keep the potassium in and sodium out. Since the membrane

is more permeable to potassium than to sodium, the positively charged potassium

leaks out of the cell down its concentration gradient into the surrounding fluid,

while sodium is unable to leak into the cell; the result is a net negative
....

charge inside the cell of about 60 mV. The voltage potential itself prevents

a more potassium from leaking out since potassium ions are attracted by the rel-

atively negative charge inside the cell.

. .' , -. * . , , , .. ... . - .- .- .. - '." ... . . . .. .- - . , 4. -•- - -
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41.4

Returning to the description of our model, let &(t,x) represent the dif-

ference between the voltage potential at time t at the location xcX and the

resting potential of about -60 mV. As time passes, C evolves due to two sep-

arate causes:

(i) Diffusion and leaks: Depending on the nature of X, the electrical

properties of the cell wall may be approximated by postulating a contraction

semigroup {Ttl on (xr) where r is a suitable a-finite measure on X. For

example, if X = [O,b], core conductor theory suggests the semigroup correspond-

ing to the diffusion equation

at- - = - t +  t ( O

with Neumann (or insulating) boundary conditions at both ends. In neural

material like heart muscle in which electrical signals can travel more easily

in some directions than in others, the Laplacian should be replaced by a more

general second-order elliptic operator.

(ii) Random fluctuations: Every now and then a burst of neurotransmitter

will hit some place or another on the membrane and suddenly the membrane poten-

tial will jump up or down by a random amount at a random time and location.

It is believed that these random jumps are quite small and quite frequent,

making it reasonable to hope that they can be modelled by a Gaussian noise

process; in any case the arrivals at distant locations or in disjoint time

intervals are believed to be approximately independent, justifying their

modelling as a mixture of Poisson processes or as a generalized Poisson process.
,.

Our principal concern is to prove the existence and uniqueness of solu-

tions to stochastic differential equations (s.d.e.'s) that describe the evolu-

tion of the voltage potential 4 - a special example of such an equation is
d°

,, . ' , . . '- '- . ' .. .-.. , • .*. . . ... - . . .- . . . ... •*.-....



1.5

(1.1) d~t (- + 6ACt)dt + dXt

(8,6?O) in which the "noise" or driving term, is a generalized Poisson process

on R+x X or possibly a Gaussian process on R+x X - and to prove that under

comparatively mild conditions a sequence of solutions to this equation with

Poisson driving terms will converge in distribution (in the sense of weak con-

vergence of the induced probability measures) to the solution with a Gaussian

driving term.

These results are established in Sections 2 and 3 of this paper. In our

formulation of the problem, the voltage potential C is viewed as a stochastic

process taking values in fl, the dual of a suitably chosen countably Hilbertian

nuclear space. (Thus the stochastic differential equations we consider govern

nuclear space valued processes.) It turns out that almost all the paths of

the voltage potential process C. lie in the Skorokhod space DOR+: H_ ) where
+ -q

H is a suitable Hilbert space.
-q

The work of Wan and Tuckwell as well as its rigorous treatment in a more

general set-up by Walsh is discussed in some detail as Example 2 of Section 4.

It is perhaps appropriate here to remark briefly on the relationship of

Walsh's work to ours. As in Wan and Tuckwell, Walsh takes X to be an inter-

val tO,b] and considers the potential as a stochastic process of the two para-

meters t, the time and x, the location. The techniques of 2-parameter martin-

gale theory are used. The approach adopted in our paper leading to stochastic

differential equations in infinite dimensional spaces (specifically Hilbert

spaces or nuclear spaces) has the advantage that the theory can also be applied

to more general cases in which multiparameter martingale methods are either
Rd,"

cumbersome (e.g. if X c d>2) or inapplicable (e.g. if X is a sphere or

*./ . .",. "-,, %'%,. *, *",.,' .. • . . ., , ,. . ,... .. .. , . . ,.... . . . .. ,



1.6

a more general compact smooth manifold with or without a boundary). Ex-

ample 3 of Section 4 and Section S are devoted to these applications.

Though our methods (in contrast to those of Walsh) do not permit us to

study the behavior of the membrane potential process at individual points

(t,x) we are able to prove stronger approximation results (see Section 4).

Stochastic differential equations in infinite dimensional spaces have

been intensively studied in recent years in the context of many physical

4., applications. They occur in the work of Dawson, Miyahara, Holley and Stroock

A;

[ 9, 16 and 101. In the last named work, which is a study of infinite parti-

cle systems in statistical mechanics the authors are led to an s.d.e. driven

d
by S'R )-valued Brownian notion. Similar equations were discussed by Ito

in his Evanston lecture some years ago [12].

The models discussed in the present paper do not investigate the pheno-

menon of excitability, or high-speed passage of voltage pulses called "action

potentials". Our models, however, are useful in describing the sub-threshold

behavior of a membrane potential. Of particular interest is the probability

distribution of the length of time until the base of the dendrit.ic tree reaches

a critical value e, at which time, an action potential is generated. Informa-

tion on this is given by our weak convergence result: (Theorem 3.2) which im-

plies that the first passage times for the Poisson-driven process converge

in distribution to the first passage times for a generalized Ornstein-Uhlen-

beck process.

In Section 6 we mention more realistic models of neuronal activity which

introduce nonlinear semigroups and s.d.e.'s of 0'-valued processes with cor-

responding weak convergence theorems. These questions as well as the problem

of estimation of parameters of interest will be considered in a later paper.



2. Mathematical Formulation

Let {T t be a self-adjoint contraction semigroup on the Hilbert space

2
H = (x,8,r) for some a-finite positive measure space (X,5,r). X is intended

to represent a mass of excitable tissue (perhaps the cell membrane of a neuron),

{T t I the evolution semigroup describing the decay of the difference Et between

the actual voltage potential Vt at the time t0 and the resting potential VR on

X. The measure r has no physical significance; it is chosen for convenience in

order to make {Tt I self-adjoint and to satisfy several assumptions below.

We shall require that the resolvent R = j0 e-Ot Tt dt be compact (for each
a1 0

a>0), and even that it satisfy the assumption

r

Al: For some rl >0 the operator (Ra) is Hilbert-Schmidt.

By the Hille-Yosida theorem*{T t has a negative-definite infinitesimal generator

-.. Since R = (ct+L) , the assumption implies that H is separable and that L

admits a complete orthonormal set {O.}of eigenvectors in H with eigenvalues 0<! l
j1 2

satisfying
-2r

Z~cz+.) 1< OD

These properties hold for any a>O if and only if they hold for all a>0" we shall

take (%=l and set

-2r

Denote by <.,.> the inner product on H and let

<{H: > (l )2r < - for all r 4 R}. For each real number r

define a quadratic form < > and norm 11.11r on 0 by

rr
(2.2) <,'>r = , , (+%

I lit = c< >r)

, ~~... . .. . ..

,' -'. . 9 "' . %''-: .. "-" " -", -' " " "~* "": """~ " '".... " "... . "h-.- " " . . * .- " . -.... . . . .
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2.2

and let Hlr be the Hilbert-space completion of 0 in the inner product < >
r r

Give 0 the Fr6chet topology determined by the family {l1'11r} of norms and let

0' be UH with the inductive limit topology.r
The following are straightforward consequences of A] and the definitions

above:
i) 0 is contained in the domain of L for every integer n.

ii) L and Tt map 0 into itself.

iii) Finite linear combinations of {0.} are dense in 0 and in every Hr

{~1are orthogonal in each H
j r

iv) HO H.
v) 0' Hr : Hs D 0 if -- < r < s < ; the injection of Hs into HT is

Hilbert-Schmidt if s z r + rl"

vi) H r and Hr are in duality under the pairing v <=E<,j>r <,$ >r for

E H-r , E H Thepairing is symmetric and independent of r, and EF =<Ft>

for , H.

vii) *' may be identified with the dual space (in the weak topology) to 0.
-tX.

The proof of i), for example, proceeds by showing that the sum E <0,¢4j>e

converges in 0 for each t>O and each O H to T t and that t (u-T) =

Y<,. >t 1 (1-e - ) j is Cauchy in H = H as t, with limit L f

Statements ii)- vi) are easy, and vii) is a consequence of the nuclear theorem (see

GV, Ch I Thm 3).

Let V be a a-finite measure on ]RxX satisfying the assumption

A2: The bilinear form

2
0(,) = a 2(x)4(x)v(dadx)

on0 x t is continuous

and let mE 0. By the nuclear theorem there exist numbers r2 E R and

02t . IR such that

(2.3) 2 + , < for all 0 c 4'

All processes and random variables are assumed to be defined on a fixed, hut

arbitrary complete probability space (fF,IP). Let N be a

:.:,,,." ; :., ,,,.,,.:,-,,. .,..,.:.................... ............ ,..................... -,...... ,............. . .. :. -,-.. ..-..-. .
,.'i #t- ,' ' ,, ' ' r "f " *" '% ." .. " "" ' *'*' ," . "-- p" " .' "' ". °""," ","."." ",,""' "."" , ".%" . .. " """ -"% . " .



2.3

regular Poisson measure on IR x X x JR+ with mean/covariance measure j(dadx)dt

and define a $t-valued stochastic process X. with stationary independent incre-

ments by

(2.4) Xt[o] =tmrfl + f ao(x)rN(dadxds) -v(dadx)dsl
t IRxXx(O,tl

The interpretation is that N(AxBx(O,t]) should be the number of voltage pulses

of sizes aE Ac R arriving at sites xEBcX at times s-<t; the probability that

exactly k such pulses arrive during the indicated period is e Xk/! with

= tpi(AxB). A computation will verify that

iX to]
(2.5) logIE e = itmfo] +tf ((e iamb'x " - iao(x))Ij(dadx)

Id

for all t E ]R+, *D .

Now let Vt = R + t E V be the voltage potential on X at time tO,

-E V ' the resting potential, and &t =V t-VR their difference: we will model

Et as the 0'-valued solution with initial value E0 =V0- VR to the stochastic

differential equation

(2.6) dt =-L'tdt + dX
t t t

Here and below L' and Tj denote the adjoints of L and Tt when regarded as

operators on 4. In Theorem 2.1 below we construct a solution to (2.6) by

evaluating the stochastic integral

t
(2.7) Et = ' + f Tt dX, -- Ttjo t- s~

0

Before doing so, we pause to introduce three examples; they will be developed in

more detail in section 4 below.

Examples:

1. X has a single point.

In this case H = Rand Tt is multiplication by e-t L for a constant L-N).

Obviously Al is satisfied for any r1 >_.

14

.4- *4 .'4' . . - , " . -. . .. .. . .,.•, . , . ,, .- .".
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2.4

2. X is an interval, L =-A~ + B (with Neumann boundary conditions).

Here we may take Lebesgue measure for r' and verify Al for all r I > 1/4.

33. X is the unit sphere in NR , L =-A (Laplace-Beltrami) .

If we take r to be surface measure then Al is satisfied for all r1 >

since then
-2r -2r1

In all three examples, condition A2 is satisfied for any measure of the 

form

(2.8) ji(AxB) 1 (a kk()+ - )

: '3.X i th unt sher en eR A= ° Laae-eti .

k= =l-1

k
in which [a } (0,) are the possible sizes of "excitatory" (i.e. positive)

e
-l k

pulses, 1-a } the sizes of "inhibitory" (i.e. negative) pulses, and {v v are

finite measures on X giving the local arrival rates. The proof hinges on the

fact that in each case the orthonormal set {4.} satisfies a bound of the form
r

F.(x)I <c(l j) uniformly in xEX and j <; we may take r =0 in examples I

and 2, and r = in example 3.

Example 1 (with k and v point masses of size fk and fl, respectively one 1 e I

the one-point space X) appeared in FTC] and FGK] and, with slightly different

notation, in rRS]. Example 2 (with X = FO,b] and p satisfying

2
. (dadx)< - appears in FJWi, as a generalization of the example in FWTI.

In the latter example V was of form 2,8 with each v and v. a point mass at
e • ,

the point x0. Example 3 was suggested to us as a model for excitation at the

soma of a neuron.* The basis for this example is the fact that synaptic inputs

may occur also in the somatic region coupled with the usual assumption about the

approximate spherical shape of the soma. We know of no examples other than

these three which have been studied to date. We will motivate and introduce

*by Dr. T. McKenna (personal communication)

6",,A
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2.5

classes of new examples in Section 5.

Consider now the problem of performing the stochastic integration indicated

in (2.7) for a specified random element 0 of 0'.

S Since any element OE 0 may be expanded into a series of the form CQ = cl.< j> qi

which converges in each H (and therefore in 0), we may hope to write E --i-r
, < >, j with Ej - r given by

(9-tX. t -(t-s)X.

t s
(2.9) = e  J ~qJ+ e dXs j.

In order to carry out this program, introduce the notation

0 0

(2.10) = X

YJ X3 -tm3

t SAt sx.

and M = f e ) dY 3

t s
0

Note that YJ is a square-integrable martingale with covariance function IEYjY
k =

sx. s t

min(s,t)Q( iV.) (because X has independent increments) and e J is trivially

predictable, so the martingale integral in (2.10) is well-defined and M. is also

a square-integrable martingale. We can and do take versions of M3 and Y-1 (and

therefore of X ) with sample paths in the Skorokhod space D(IR R) of right-con-

tinuous I-valued functions on IR with left-hand limits at every point of (0,-).

* Lemma 2.1

For each T>0 and q-r 1 +r 2 , JE sup (e ) 16T0 02.
1'j < O<tT 2-t(1 "

In particular, the sum converges almost surely.

Proof:

e JM= f e - dYjt s0
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ff ).e 3 Y ds
oJ s

i so we have the bound

:'-', l-tx. t -(t-s)X.

le W1 : < ( sup IY'I)(l+J X.e ds)
O s t J

. 2 sup IYJI.

Dooh's inequality applied to YJ yields

IEsup (e tMt)
2 s 4E sup 'Yj[2

: t _<Tf t<T

-2 2

16 TE(Y-
)': i =16 T f" a2"(x)ua(dadx)

16 T 02 (1+Xj) 2 r

It follows by the monotone convergence theorem that

E <sup (e iMj)2(1 + X)2q

j t<T tJ

se 16 TO 2 -(I + x 2r -q

s 16T 102

and hence the series converges almost surely.

Now set j mt -(t-s)

(2.11) mrn = e Jds
0

so that
, •-tx j. -tA

t 0 t t

4N,

..-- . . ' ..

-. . . . . . . . . . .

- .. . . . .
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Theorem 2.1

For each random element 0 of 0' satisfying

A3: E 11%11r 3  < 00
3

for some r3 E IR, the series

(2.12) Et = &

converges uniformly in O_t5T in the H topology for each T>0 and q :max(r1 +r 2 ,-r)

to a process &. whose sample paths lie in the Skorokhod space D(1R :H_ ) of right-
. q

continuous H -valued functions on IR with left limits at each point of (0,-).
-q+

The process satisfies

.E sup II 112 < c
tT t -q Tt<_T

and (A fortiori)

E & 1 ltr : 5 CTI,II112 (O-5t:5T)

for some CT <0

Proof: For each T>0 and n<n' E IN the triangle inequality yields

n' -tX.
sup I l - sup II e 3 Eg.L (Initial term)

0<t-T n<j<n' <t q OtT n+l

n' _t),.
+ sup e IL (Martinqale term)

4." 0<t<T n+l

+ sup I l "'t j (Mean term)
0<5t<T n+I

We bound the three terms separately:
-tx.

(Initial term) 2 -< sup [ (e 3 2(l + X)2q
Ogt<T jn 0

"2j>n0



4 2. 7 "7

2.8

S0 a.s. (as n-w-) since E <q

(Martingale term)2  S sup (e j Mtj)2( +X) 2q "

Ot5T j>n '

+ 0 a.s. as n- by Lemma 2.1.

(Mean term)2  5 sup 2 (0 • 2 -2q

O~tST In~0 ds) (l +X) 
4

0:5t:T j >n..

T 2 1 (mr 2 (1+X 2

j>nJ

0 as n - since I-l q 11311 2  0 < 00.-q -r 2  "'

Thus the partial sums converge uniformly on FOT] in the H_ topology.
.4 'q

Since each partial sum lies in D =D( +: H ) this implies that the partial

sums form a Cauchy sequence in the complete metric space D; let E. denote their

limit.

The estimates above and the Cauchy-Schwartz inequality together yield

E sup Ht12q 5 3E F(Initial term)2 +(Martingale term)2 +(Mean term)2 1

2
S3[03 +16T 102 +T202]

= CT. [1

Theorem 2.2

For each 0rgt<- the process t constructed in Theorem 2.1 satisfies the

equation

t t-r r+ (r,t]t.s

satisfies for each *E 40 the equation

(2.13) ,r*] = rrT t ]+  tjdXsFTt - ]
t r t-r] f(r,t st-

4%

o............ .......................... ... ..
,,~~~~~~~~~~. . . .. . . . . . .. . . . . . . . . . .... " -'"'-, ' . .... -. -'"" .. . .-- "
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4

Proof:

For any q !max(r I +r 2, -r5) the following series converge for all H •q by

Theorem 2.1:

-tx,. sx,. -t . (t-s)-

e Ifo.] e 3 '(Or e +M~f e j ds)
- dt-r)X -r S. -r.-(

ct = FT rr sj E e b e + malest d-aeb ra e hIch ) , a d s

r =f.] rt e  Jd +M1rde Jmds)

-[t-s)X ( ",."

J 4 = I~~fr,tj d's'Tt s,] .r7"-'2

• -Corollary 2.1

.Let F o[ : 05s:50 be the smallest gv-algebra over which en and

X F€1 are measurable for all s:5t and c . Then for r:5t, _

E Ft¢]!F ] I FrTt r¢] + ft mrTt_s~l ds .. •

Corollar 2.2

thas the (strict) Markov property, i.e. IF is conditionally independent

: ~of a(& F I: s; r, c40} given a{Cr€ M: 001}.".

~~Proof:"

Let k E it and tk 2r for 1-k<K. Using the independent increments property

of X., it is possible to compute explicitly

~i FItk k k lCrrkkl tk k .S

logE Fe k Ir11 r ( Tt k.1 + Sr mrJ tk-s 1ds)
k!5K k k:

+ f (e aF 's - 1 - iaF(x,s)lj(dadx)ds
]RxXxpl.

. . .... . . ° . - . . ,

.. *.-...°- :. . . . .
=_',= To % ", ",_" " ''_'' ,''''_'r'" " ". " . " , ",'" .' ,' .' - ." " -" ° -' .''' . . . .-.. . ..".. . . . . . .-.. . . .".. . . . . . . . . . . . .

"
.,' S ,.

, - - •~~~~~~ -il~ / l•ii lda
.
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where F(x,s)= I (r,tk(S)TtkS(X ; since this is not only F-measurable but
k!5K k k

of r r1: 0 OE}-measurable, we are done. I-

In the remainder of this section we state and prove results similar to

Theorems 2.1 and 2.2 for stochastic differential equations of the form

d t = -Lt4tdt + dWt

in which the 0'-valued stochastic driving process W is Gaussian. The proofs
t

are similar to (and a bit simpler than) those for the generalized Poisson pro-
cess Xt already considered, so they will only be skeletal.

.:' Several authors have considered infinite-dimensional Wiener processes and

Ornstein-Uhlenbeck processes such as W and 4 in case P =S. For example, Tto

has an excellent account in his 1981 Evanston lecture, r121. Miyahara considers

similar processes in connection with a vibrating string problem F161; lolley

s. and Stroock, in their treatment of a problem involving infinite particle systems

also introduce these processes F101. However, since no discussion in the litera-

"' ture seems to include all of the estimates we will need in Section 3, we prefer

to derive them here.

Now let Q denote a continuous positive-definite bilinear form on 4-4), let

mE 40', and let W. be a path-continuous 0'-valued independent-increment stochas-

tic process with characteristic functional

A e iwt r¢] =eitm[]-tQ(M,#)

Ito r121 calls such a process a "Wiener S-process" when *=S. The Minlos and

nuclear theorems allow us to construct such a process with continuous sample-

paths lying in H for any q - rI +r2 if m and Q satisfy
-q1 2

I2' Im[ ] 2 + for 5 1
'"2: for all (D4

For random C0 e H_q set

a.o



iZ.-.: t . a-,. . .,. , . . ...... . .,. . .. . . .. .. ... . -.- -.- ..-. •- .;- .. : ', : ."

-2.11-

0 = oJ :
0 O0

mii

wt= wrJ
t o,

(2.14) Z = Wit - tmj ,

m= ft e ddZs

t 0

and e+ +e M
tt t

Theorem 2.3

For each random element C of 0' satisfying

A3,: 1,l 2 3 < for some T3 F , V

73

the series

(2.15) t = t J

converges uniformly in St<T in the H_q topology for each T> 0 and qz max(r1 +.r2 ,-r ..

to a process C. whose sample paths lie in the space C({R+: H ) of continuous

!I -valued functions on IR . The process satisfies

E sup 112 !9 C

and(a fortiori)

fr2 (OstST)

for CT = 3r3+ 16TOlO2 + T2 0 2  < O

T 3r3  1 2 2

-a .- . . . . . . . . •. S - , o -, - . . , . , , . . . , . .. • . "....a =., -
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AI

Proof:

In this Gaussian case each Z, is an ordinary Wiener process, with diffusion
rate E(ZI)2 = Q(j,*j); it follows that ZJ, Wj, and M may all be taken to have

continuous sample paths. This forces the partial sums I C10. to have continu-
j sn

ous sample paths. The proof that the sequence of partial sums converges uni-

formly on each Fo,T] proceeds just as in Theorem 2.1, using exactly the same

estimates and leading to the same bound CT . ]

Theorem 2.4

For each 05rSt<-o the process C constructed in Theorem 2.3 satisfies the

equation '=Tt * ' dWs, i.e. satisfies for each OE (D the equa-

tion

(2.16) t = rTtr*] t dWsT tl

Corollary 2.3

Letf =~ 1CD s~t); then for O~sr~tcoo~s

E rc ro3iN] rrTt0r)ft mrT 01 ds

Corollary 2.4

Lethas the strict tearkov property.

Proof:

The theorem and its corollaries are proved in exactly the same manner as

Theorem 2.2 and its corollaries. n

Remark 2.1

if r,0is jointly Gaussian with 1W.) then r*will be a Gaussian H - valued

process which is in many ways an infinite-dimensional Ornstein-Uhlenbeck (hence-

forth: O-U) process. If m-O and C0 is independent of W then for each j

_V
3"* . . . : . . . . . . .".. . . - . . ' -/ ; . , . , , ; .. .- -
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.. So°
-tA. .X

=e Cig+ fte ~ dW

is the usual O-U process satisfying the stochastic differential equation

(2.17) d X CJA. dt + dW3
t t t

with initial value Ci. -

For X. > 0 the process C will be stationary if 0 is independent of W
J 0

and has a normal distribution with mean 0, variance Q(. j ,4)/2X.: if X. =0 then

=4 J W is a Wiener process starting at

Remark 2.2

The processes (Cj} will be independent if the { ) are independent and in-

dependent of {Wtr$]: t>0, *EO} and if { .} diagonalizes Q, i.e. if Q( i ' .) =0

for i #j; independence may fail in other cases. Similarly, the processes { :

2.
constructed in Theorem 2.1 will be orthogonal if Q(O. ,$.j) = Ja 4 (x$(x)w(dadx --0 ""

for i #j (as will happen when r(dx) = fa2V(dadx), for example) and if

E 0r,0 IYt FiP0=o for all t > O and *, e ..

Remark 2.3

The mean functional m in the definition of t (similarly Ct) plays an inessen-

tial role; in most cases it can be absorbed into 0 and VR as follows.0. R

Assumption Al implies that L has a finite-dimensional null-space spanned by

( ....** , n1 for some n?0; let

m= . m[Obj
jM n 

"

he the projection of m onto that null space, and set mR = ), (mJ/j)ij. The series
j>n

converges in H and satisfies

m = m 0 + Lm."

We can now write m" (see (2.11) and (2.14)) in the form
t

'.... - . --4 . . . . . - . .: . . .- .

I .5 . - . . . . . • , .',.o , "

F * . .q o . " _.o . . . . o
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mi m e~ ds

m-t if s n

[mj~l-e ])l/X if j > n

-tA.

= mjo]t + m r . ( - e 3)

and rewrite Vt =VR + t as V R t n + C t where V R-VR +mR is the new resting poten- 7

tttial and t =Et- mR- tm0 is the new deviation. The process 't with initial !

value F0 = V0 - VR = E0 - mR satisfies the equation

0 0 0 -

This is just (2.7) with replaced by t and X by the process Yt =Xt- tM

which satisfies an equation like (2.4), but with m =0.

The effect of m is to bring the resting potertial VR to a new equilibrium

V R" Usually L has no zero eigenvalue, so m0 does not appear.

,A Remark 2.4

Theorems 2.2 and 2.4 suggest that the equations

d = -L'ttdt + dXt

and

d = -L' t dt + dWt

might have stationary solutions on --<t<- satisfying (2.13) and (2.16) for

all --<r<t<-. When A > 0 for all j this is indeed the case. After setting

m =0 (see Remark 2.3) and defining Xt f Yt or Wt f Z t for all tE IR, it is easy

to construct

M. ft. dX ITt 0

or

" ft. dWsT T 01

as in Theorems 2.1 and 2.3.

, - , , - % . . . - . - -. -. - . - - -. -, . . - . . . a - .- . . -. a

a-e. , ." . -. ' .. . " " - ' - " "-- " . .. . . a
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3. Weak Convergence of Solutions

Now let us fix a a-finite measure space (X,B,r), a self-adjoint contraction

semigroup {TtI on H = L 2X,B,r), and an initial voltage distribution EE' and

consider the effect of varying the distribution of the incident noise process

Xt . This distribution is uniquely determined by the mean functional mr (0' and

the measure V which gives the expected frequency with which impulses of various

magnitudes hit X at various points.

In Theorem 2.2 we have derived the stochastic differential equation satis-

fied by the "electrotonic potential" E (= the difference between the voltage
St

or membrane potential Vt and its resting value VR). As was shown in Theorem

2.1, E. is a process whose sample paths lie in D(I + : H q). To study the con-

tinuous approximation of a sequence E. of such processes it is first necessary

to derive auxiliary results on the weak convergence of D(I H_ )-valued pro-
-q

cesses. We begin withSm

Leumma 3. 1

Let {pW} be any family of Borel probability measures on D=D(I+ :H) for

some real separable Hilbert space H with norm 11'11. Then {PJt is tight if and

only if for each c> 0 and T> 0 there exist a finite-dimensional subspace F c H

-" and positive numbers b,6 such that each p satisfies

(3.1) i) PahED: sup I(I-T)htI> £)< , E

ae. ii) Pa{heD: sup I[[FhtII> bl<E"- O5tgT

iii) Px{h c D: sup 11n Ch -h0) II> } <

O-ss 6

I.. and iv) P"{h F D: sup min( 11F (h - htl) 11, 1TIF(ht - ht) II ) "

..

...... ...............................:. ...................
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3.2

The supremum in iv) extends over all choices of (tl9tt 2) satisfying Otlst<t2<T

.* and t 2 -t <5. In i) -iv), ITF is the orthogonal projection in H with range F.

N Proof:

By Prohorov's theorem it suffices to prove that a set Kc D has compact clo-

sure if for each E>0 and T>O there exist b>0, 6>0, and FcH as above such

that every hE K satisfies

i) sup 11(1 -TI)h 115 E
thF t

ii) sup 1IlTFhtI -_ b

iii) sup iITIF (h s - ho)I 11 C, sup II F (hT h E: - , :
0!5&56 T-6<s<T s

iv) sup min{IIF (ht - ht l )II , IF(ht2 -ht) E

The space D with its Skorokhod topology is a complete metric space under the

metric

d(h,k) =sup e-Trmin[l, inf maxCllXllT, sup IIh-t -k tII) 1

O<T<X EA Ot-<T

where A is the space of strictly increasing maps from IR+ to IR+ and, for T> O,

and XE A, sup logf(Xt-Xs)/(t-s)]J. The proof is similar to that
T, Os<t<T

of Theorem 14.2 of Billingsley F6] The useful property of this particular

metric is that for every T> 0 it satisfies

(3.2a) d(h,k) <max(e T , d(loT]h Iro,TIk))

and

-T(3.2b) d(h,k)!5max(e r
, sup 1Iht ktH)

O~gkt5)

For each nE IN let Fnbn, and 6 be the subspace and positive numbers pro-
ns n n

mised in (3.1) for c=en and T =n; without loss of generality we may take

r cFn+l' b <b and 6 6 for each n. This insures thatrnFnl'n - nil' n 6n+l )'

(3.3) I11F hi1-< II11F hll for n!m
n m

r.... ..

m - w. - .', , •. . ". -" - , . -
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for each h EH.

Let {h nc K be any sequence and define n0 i = i. By Theorem 15.2 of '61

there is a subsequence {n } along which f hn converges in D(rO,11: F) and hence

along which RIr1 h is Cauchy in (D,d). For each j->2 there is a further sub-F ro'l1 n
sequence i.. along which TI 1 o,]h is Cauchy; set ki =h and consider the di-

3. F. F o~ n ucy se 0= n dcniethd-

aponal subsequence (0). We claim {k11 is Cauchy in D.
1 1

Fix any -n>O and take NE EN large enough that e-N </3. Let F=FN and fix

N* >N.so that for all integers i,j-N*,

N N
d (ITI k T1 l k n/3d FO,N k 2 FIo,NIj

From (3.2) it follows that

(3.4) d (I kN ITFkN) max(e n/3) - n/3.

Since every n with i2>N is of the form nNj for some j >i, (3.1)-(3.4) yield

for each i,j -N*

d(ki , 0)_d(k, Ik) + d(Uk IT 0) + d(I 0, k) 0.
i' i F i F 1 F jF j'j-

Since each sequence {h n c K has a Cauchy subsequence, K has compact closure. F1

Lemma 3.2

{pt 1 be a family of probability measures on D = D(IR H) for some realLet reabel

separable Hilbert space H with norm 11•11. A sufficient condition for {PaI to

be tight is that for every T> 0 and c> 0 there exist a finite-dimensional sub-

space FcH and positive numbers cl, c 2 , c 3 such that for every O-tl-t-t 2

each Pa satisfies

.- .D sup II (I - 1F)hs 2 dP" ! 5

ii) fD sup 1IFhs1 2 dPa < Cl,

)iii fI)JITF (ht -ht) 2 g c 2 (t 2 - t)
74

-- o . .. . -
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iv) f IIFt l (h h -I 1ITF(h ht)12da < c3(t2 - t)2

1 2

. Proof:

Chebyshev's inequality yields i)-iii) of Lemma 3.1 while the same argument

Billingsley uses in the proof of his Theorem 15.6 r6] gives iv).

Lemma 3.3

Let G1 and G2 be subsets of a topological vector-space with compact closures

6 and 6. Then G3 =I 1 
+ 92 giE 6i, i=1,2} has compact closure as well.

Proof:

The set '1 +2 ={g1 +g 2 : giE61' i=1,2} is the continuous image (under ad-

dition) of the compact set G1 x G2c V xV, and so is compact. This closed set1 2

contains G3 and hence V which must therefore be compact.

Corollary 3.1

If the families {,,X 1l and {IPYl1 of Borel measures on V induced by

random elements {Xa: ae A and {Ya :a A} are both tight, then the family

{PoZ - I } induced by Za  X +Y is also tight (even if X and Y are not inde-Ct C t _

pendent).

Proof:

Fix E> 0 and find compact sets G V satisfying w rX a E 1 c/2,

I'rY cG 2 'l-I - /2 for all acA; then ]PFZa E G 1>- -E, where (as above)

G3= {g1 +g 2 : gE E
Gi , i=1,2}. •

Theorem 3.1

Let A be any index set and let {ma :a }Ac' be an equicontinuous family

of linear functionals on 0, {: a E Al a family of measures on lRx X such that".

the bilinear forms Q , (,i) =f a2 (x)tO(x).I1(dadx) are equicontinuous and, for

* each -E 0', f a 44 (x)ui (dadx) is bounded independently of a oE A by some number

"4(4) M '. Let be a random element of 4" satisfying
4. 0



3.5

1EIE III 2 C

3

for some r > -.0 Then for all sufficiently large q E IRthe family {Pa:a A}

of Borel probability measures induced on D=D(]R H ) by the processes

a EA constructed in Theorem 2.1 is tight.

Proof:

By the equicontinuity condition there exist numbers 0 > 0 and r E IR such2 2

that
(3.5) ,,,(,I 12 .,- QC(,,4 <e2II12

r2

22

for all *E4
' and cigA. Let q > max(r I + -r 3) and set 03 1E I11 2 < Tt

follows that assumptions A2 and A3 are satisfied for each aE A, so Theorem 2.1

establishes the convergence of the sum

-tX . -tX.

in the D topology (and, in fact, uniformly in the H norm on 0-t-T for each
-q

T>0). By Corollary 3.1 it suffices to show that the families' {P$; ,=l,2,

induced by the sums
, -tX.;: ~i=l: %o(t) = X.e J ,

e. J j

i=2: te = je J Mj'aS j
t Jt J

i = 3 : m- -

are each tight.

i =1: Since E does not vary with (x, the "family" [P a consists of a single
0 1

inner-regular Borel measure on D, and hence is tight.

i=2: Fix c>0 and T>O. By Lemma 3.2 it is enough to find F and c1 '2' c 3 inde-

pendent of a satisfying

i) sup 2IU - - <-

05s<T -q



3.6

ii) E Jsupll -1 Nell, <

'i., iv) IE 111F (Mat-N# )tl n (" aI2  i-t

F t -q Ft1 q~ C 2:..,. )N II ll5x - )I2tcjt _t 1

. By Lemma 2.1 we can satisfy i) and ii) by setting c = 16600 and letting F he
1 2 -2r

,'.,,.the space spanned by {41.''" 4J} for any J large enough that 16TO2 j (I + .) < F*

• Lmma Now fix any stl- f t2<T and compute

jtt-s 2  -tlS j ,

th p c sp n e b {01 .9 fo an J l arge en u h t a d6O2 j>J l +

N j (O,t2  s (Ot] s

- j~ (l*Xj)-2(O, )1 f1(s)dY ' 2

" f -(t2- t 2I 's)X -edC-(t(-s)X. l -o)t (s)

| for the function fj(s) =e (O)t-e (s

j j (OOt2. (O~t1I

. Note that(3.6) i f.(s) e -  
2 - t (Ot]Cs) l(tlt] (s)

Straightforward computations iith the log characteristic functional

log E e = tf(e ia o (x ) _ 1 - ia¢(x))I (dadx)

2 4
show that for f,g in L (IR) nL4(R) and *,iP in 4,

I E f f (t)dYOrLJ = 0
"4i

(3.7) E (f f(t)dYtF1)2  f a 2 , 2 (x)f 2 (t)la(dadx)dt

-. Qa(m,)f f 2 (t)dt

(3.8) JE (f f(t)dYt,])2 (f g(t)dYt[p]) = (f a 42(x) 2 (x) ic(dadx)f f 2 (t) 2(t)dt)
. ,",,

t . .
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+ 2(f a lx)i j)1'(dadx)) (ff(t)g(t)dt)

+ (f a 2 2 W1x O (dadx)f f2(t)dt)(f a 2 2 (xbjjit(dadx) f g 2(t)dt)

=fa4 2 x) 2 (x) Ia(dadx) f f(g(t)dt

+ 2(Qa~~) ( f(t)g(t)dt)

For the particular case of =O. and f= f. we find (by (3.6) and (3.7))

j a 2 ~ " )~ J

ONOO )Ar~Jt I it 2 -tI I t 2 -tlI]

22 2 2

so iii) is satisfied with

c2  = 2  .~(l x~)-2q..2r 22

I J ~~1 1T X(~]s~ (~
1 2'

g.(s 1e1 ()- (s), then by (3.6) and (3.8),

tE 1 2

-~~~ - ~~~ (1X) 2.).) E (f f (s) dY~')( g(s)dY~')

1fa dp' c j ~dt)

ii J <J J.

.2q-2qa

+ 3 +. X Oso~aol ffd).~

.*4~
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'::"" <i.jJ (1 i-q1+k)2 4 (i)04 J¢) XX.t3+ J L2) t tl,3t - t)_

Xi) -2q k )- 2q( 6 
2 (2r 2  ) r2 2(1 + X + Xi  t (t (t(Xt2  0

j:" S j 2 <

~~ 2 2<c[2 t 1

S 2

with

3 34 2 4+ 4q~ 2 2 2j ;= -J 4( )T TX 1 1(l X J) + '/4[e 1e2 (1 + T X J) 1

Thus i)-iv) are satisfied and {Pa} is t2 tight.
2

i =3: Since mt is nonrandom, each P3 is concentrated on a single point. It is

sufficient (by Lemma 3.1) to find, for each E>0 and T>O, a positive number (S

such that

i) sup (I - flF)TmtI M
0!5 Ot<T Ftq

ii) sup IIl FmtI <

iii) sup IIln rm-mo]a]I <
0:s<6 F-s0 q

sup III, rIIT MSill- 5E
T-6SsST q

" iv) sup miniF I r m  Lqt1;n F ;m r2 il) -< €  c a 5

large Fthat I+T be the space

By (3.5e e h{av1.., c}. It follows that

-'-sup 11(I - II " mall 2  = sup . (I +Xj) 2q~macj]. eS)j ds)2

" ~2( 0tTF"t -q)

arge q Ott<T j>J
2 2 2 -2

! "2r2

ST (2/T2 2) (l+Aj)
j>J

,. . . . 1 "
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2 0,1 1 11 2:5 (C /ez  I2 a 11 T
2

2

verifying i). The same estimates show that

.o~q4'! ,sup Ijll mail 2  s T2 lmI
OStST " t -q -q

2 a

2

< T 2e2

so ii) holds.

For iii) and iv) it is sufficient to prove that HFm is a uniformly continu-

* t

ous function of t on each finite interval, i.e. to find 6> 0 so that

(3.9) InFrm-ms11_q5 C if O:sStST, s-t156.

We compute t -ux,
I~nrmmS]L j l 2q)(m.f e j du)2

F JJ j s q.:j

5 It - 121,l a1l2

-h 

-q*k-4

s6It-s1
2

so (3.9) holds for all T >0 with 6 =e/(62 ) .

It follows from Theorem 3.1 that' {pa) has at least one cluster point, and

that any cluster point is a Borel probability measure on D. We now turn to a

situation in which there is a unique cluster point to which every sequence in

p} must converge.

Proposition 3.1

Let Y and Z be independent-increment 0'-valued processes with log charac-

teristic functionals

-P -, " " '_q'_w, " 4__ m . - *. " -. . . . . " . " ' - " • -" 
"



3.10

iYtr 3 .]
r* eia~x)

(3.10) log E e = tf (e - 1 - ia (x))p(dadx)

log E e = -tQ(MO)

for some a-finite measure ji on ]Rx X such that the positive-definite bilinear

forms Q and

Q'J'(OA') a 2 aO(x)*~(xhij(dadx)

satisfy the bounds

(3.11) Q(0,0) < ll0ll2r

for some numbers 0 c IR and r IR. Extend Q and Q to H by continuity.

Then there are unique continuous linear maps Y and Z from L2 (IR Hr) to
+ T

the square-integrable random variables such that

(3.12) Yt ro = Y o-

z roi = zrl(o t0J •

These maps have log characteristic functionals

iYrFJ iaF sx)
(3.13) fy(F) =logle = J(e I iaF (x))p(dadx)ds

5

TZ(F) =logE e = - f Q(FsFs)ds

which satisfy the inequality

(3.14) IF(F) -" (G) I <6(IFIl r + 111GIIIr) IIF - GIr

2for F,GL )R Hr Here 11FIlllr denotes the norm IIF 11 sds) of an clement
for deoe th nor
2

F L (]+ : H ).

Proof:

For functions F EL 2(IR : H ) of the form Fs (x) f. (s)4 (x) with each f.

a step function with compact support, (3.13) follows immediately from (3.10).

By taking derivatives in (3.13) one sees

........., .......-... ..,...............

1"', ,'', e,%,,.c e ,C',te ,'; . . =**.. ..
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IEyrF] - E zrFI = 0 ,...'i

IE (YFF 2) = S]R Q1J(FsFs)dS _<elF~~

." .E (zrF] )  f [R QCFsF s)ds 5. 6IIIFII r.

Since step functions F of the form indicated are dense in L2(II+ Hr), the

proof will be complete (by continuity) once we verify (3.14) for step functions.

First we consider Y. If x and y are any two real numbers then

I~eix--ix)-(eiY-i - iy) = Ifyf t i2eis dsdtl

sIfyltldtl

: cxI + ly)Ix-yl;

hence

.Iy(F) -Ty(G) 5 1a2 IFI + Gol) F -GIdUds

s (fa2(IFI + IGI) 2duds)(fa2 1F1 12dd)

! ( 111 IFI+ JUG IIIr IIIF-CIII

For Z we use the parallelogram law:

IT z(F) -Tz(G)I < fIQ(FsF) -Q(Gs,G s )Ids

-. = Q(Fs +Gs, F s -Gs)Ids

!5 h(Q(Fs + G , F + G )ds) h ( Q (Fs  , Fs-fs )ds) "

i OIIIF +GIIIrllF llr

: h8 IIFII + IIIlllr)I J Ir • n
Remark 3.1

For each P e 0' and t > 0 the random variable Mtrp] appearing in the proof of

'eorem 2.1 (resp., 2.3) is of the form YrF1 (resp., ZrF]) with

-. ,4 
- '

4. , . . ..- ..- , . "- . ... 4-. : i 4 - .. . 7 .'
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-(t-s)X2
F W E j .. (S)e e* (x). It is easy to verify that FE 1.R: rI )

if q) E H, sincer9

-2(t-s)X. ds112= 12 vroj e 0ll dslr llolllr r@

<_ t j p r o j .1 2 ( 1 + X j ) 2 r $ "

2

tIIpIIr •

Remark 3.2

For each P E @ and t > 0 the number mrrip] appearing in the proofs of Theorems

2.1 and 2.3 satisfies the inequality

-(t-s)X
Im JiPI = lIj~r.m[ jfro 0 ,e idsl

fo= fr t]mrFs]dsl

!5 ~lmlro t3iiLrIIIFIIIr
llmI - r ll llr

For each nE 1N let Xn be an independent increment '-valued process with

log characteristic functional

ixr] -.

log 1E e = itmnr,] + tJ(e'a o~' - 1 - iao(x)) n(dadx)

for some m n E and a-finite measure p n on 1Rx X for which the bilincar functional

n 2 ()(XIn
Q(,i) = J a 2(x)i(x) (dadx)

is continuous on (P xO. Let Wn be an independent-increment 4'-valued process

with log characteristic functional

iWt ] ['.
log l e itmrF]- tQ(,4)

for some mc ' and continuous positive bilinear form Q.

Let {n I and Call be random elements of (DI satisfying the bounds

0 0

t .. , ' °. %- ' % • . " % , - .- .- .,. . .. . . . . . . . . . . . ." .. .- . . , - . .
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3

JE 0112 8
rJ 3

2 3

for some fixed r E IR and 6 I ER (independent of n), and such that each n is
33 +0

independent of {Xt} and C is independent of {Wt}. Let n and be the '-
t 0t

valued processes given by

n ,n T' dn
(3.17) = T ,n + fI'tT' dXn

t 0to (O,tlt-s s

Ct= T.ICj0 f' I(Ot]Tti dW

in Theorems 2.1 and 2.3, respectively. We now prove the main result of this

section.

Theorem 3.2

In addition to (3.16) assume that {1J }, {in}, and {n) satisfy the following
0

conditions:

E i Or.] i e rqb]

A4: i) 13e 0 limEe

ii) mr€i = lir n[¢]

iii) Q(,,) -lim Mn

fl4w

iv) 0 = lim f a40 4 (x),In (dadx)
-n -),

v) fnr0iI 2 +Qn(,() e 2
2

for every * and , in D, where 0 is independent of n. Then for every q -

n n- nl
max(r + r2 . -r3) the measures Pn fP o(En) induced on D = D( R: H-) by n

converge weakly to P = WPo(1)
-

.9 21

...,,.-..... ,, ,. ...,.,...... .. .... . .. :.: :. . 9, :
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Proof:

From ii) and iii) it follows that m and Q satisfy v) too, i.e. that

1mr4J12 + Q(4,€) e2 2 r2
2

for all ¢E 4. By Lebesgue's dominated convergence theorem it follows that

(3.18) ]m - mn112  = (mr] - mro]) 2 ( 1 + )-2q

+ 0 as n--

(3.19) IIQ- QnI,2 -q YQfl(j,) 2 (l X0-2q(l X - 2q

+0 as n co

The norm IIsIIs = (Iij S(.,.) illillr~lolll appearing in (3.19) is the tensor

product norm ".'"r * I of the bilinear form S, when S isregarded as an element

of (fD)' s u H rH (see [ 19], Def. 43.3 and the discussion following).sir r s

and satisfies IS(c,4)I IISIIrsIlWLrIrLs .

Thus the hypotheses of Theorem 3.1 are satisfied, so {Pn} is tight. To prove

nthat P converges weakly to P it suffices to show that the finite-dimensional

distributions of Pn converge to those of P, for then {pn} could have no cluster

point other than P and so must converge.

Fix any KEN, {t 1 . . . , t K}c R+ , and' It remains only to

show that
n,,' iktk[k] i~k~k rp 1/

(3.20) E e =lim k e
nl4w

2Fix any T 'a max{tk } and define F E L (IR+: H ) by
k + q

• -(tk-S)X
F(X) = Zkjbk~j~lO tk](s)e J .(x)

note that

IiFslir ( 7j(Yk1hPk[0b 2 (l + X 2r) 11 'k1r



-Z4

3.15 m

for any rEI and F =0 for s , rOT], so F0 f_ and IiFIll!5T

As in the proofs of Theorems 2.1 and 2.3 we decompose and n into the

three series

-tX. -(t-s) (t-s).
t = (J Oe  ) + (Yj fro,t ]e jdZ j jjo,t

It= -tx. -(t-s) jdynf,, -nts)

(Y = le 0 )) + (j frot]e dn i) ( .mnrjero teds

each series converging uniformly (for t-T) in the H topology. Thus
-q

-t

kt krk] = kkjkro ]0O je

*] - (tk-S)
4 + 1k~j'Ik[¢j]frO,t ke jdZ s. 1

k sk1 €: k~j~F~j m~ejUI[Otk~e(tk
-s) X.

.+ e ds

= 0oF o] + ZrF] + IfO,T]mFFs]ds
.1,

and similarly

Lk t rk k 0 0 + frO,T] FFs a s

n 2where Z and Y are the continuous linear maps from L (Jy H ) into the square-
q

integrable random variables given in Proposition 3.1. f

By independence we have

k 1kt k r)k]
(3.21) Tflog1Ee k = T(F) + z(F) + Tm(F)

00
with ioF ]

i

-i '' o(FO) = logJ e , .

0

iZrFJ" z(F) = logE e

= - IrFO,T]Q(FsFs)ds ,

• .. 
..

L . . . .- •-

I .' '' : "- " " " ": :'" " , ' -. . . . ., - - - - -. ........



3.16

i fm Fs Ids

Tm(F) = logEe

= if mrFs ids
fro,TJ

Similarly,

k t k-
(3.22) Tn =logE e k = n (F) TYn (F) n m (F)

Y m

with Sn

T (F0) = log e 0

iaF (X)

Sy(F) = (e s -1 - iaFs(x)) pn(dadx)ds

T mn(F) = ifroT]mnrFs]dS 
0

Fix ; > 0 and choose JE N large enough that the orthogonal projection IT of |I
q

onto the span of {ol'"*.' OJ} satisfies

by the triangle inequality and Remark 3.1 we have

(3.23) III(I-")FIIIq < 1ktII(I- 11)*k" q

. e/(12 2 IIIFII q)

By i), iv), (3.18) and (3.19), we can find N IN large enough that for cach n >N

•n. ioFo] j~oFo0 ]

(3.24a) jlog1 e -1logEe E/3

(3.24b) Irn- mnII _q q

(3.24c) I1Q- Qflj q*_q , E/12IIIF q

(3.24d) I fa4 (x)n(dadx) < 2 /4TO2I!FIII ( y. IV) r 1))

j"J 2.. j" J kK k .
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Introduce the temporary notation G=11F, i.e.

• l (x) = k - '  tk](S)¢(x). Then 1III 5 111Fql
,(x J k1C jI q q.. j-<a k_<Kk

and

(X) -1roT (s)(j kI1Pk[ j]1jI)4

..5 _1 ,or (s)d(1 -I I ~) /3 )3 jjO()4 , '

44 4 1 / 3 1 f4 4 n
so a 4G (x) n(dadx)ds < T(lj( k ) [ ] ) a ja4W.i(x) n(dadx)

5 j lkkoj j~

"5 E /40[[IFIII2 by (3.24d).

Thus

1 ia6. 2 2 n 2 2 n 1
IT zC(G)- Ty (G)i If(e -1-liaG+ a G )dp ds- Ja2G dnds+ Q(s,iGs)dSl

!5 f [ia -iaG+ a2G 2 I ds+ fQn(G Gs)-Q(G, GS)Ids
2 s s s

: _ alf aGI 3dlnds+fllQn_ Qll_ qO.q i 2 ds

5 6(fa2G2dvnds) (fa4G4dp nds) + IIQn - Ql _q, llll{ q2 2 1112) h 11, F 11, 1) 11,
_.I -1 ) I( /4e iFI+[F) +(/12 11II

~e 2  qIG ~)C 2 42  q q q

< /12 + c/12

. . /6 .

By Proposition 3.1 and (3.23),

(3.25) ITz(F) - yn(F) I () - T Z(G) I + ITZ(G) -T yn(G) + I (nG) - y(F)l

e o2(IIF +II q + 111G 111 + s/6 + he2(lllFlllq+ ll6 lq) ll F-C,

!< /6 + 202II 111I F -IFFIII

E:/f6 + ef6

E s/3.
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By (3.21), (3.22) and (3.24b) we have

(3.26) U1 M(F) Y n (F)i fjinF] mnrFF lids

qq c

JI ur- M n 11T '2(If11F 112 ds)

- Irn- nI T "21 IFJII
-q q

6/

Finally by (3.21), (3.22), (3.24a), (3.25) and (3.26),

(F~1n T 0F + 1Y '(F) -Y (F) I~ + Ym(F) Y M (F)

0 Y i0

!5 E/3 + c/3 +E/

This completes the Verification of (3.20) and the proof of Theorem 3.2. f

Remark 3.3

Condition A4 iv) can be -replaced by

2+S )2+6pn
A4 iv)' lrn fial J(j i(dadx) =0

for some 6> 0. Since in most applications the incident impulses arc uniformly

hounded by a constant A <- and A4(iv)' and A4(iv) are equivalent in this case,

we omit the necessary changes in the proof of Theorem 3.1.



4.1

4. Examples and Applications

In applications, the set X represents a neuron or some part of a neuron

(such as the cell wall, soma or dendritic tree) or an assemblage of neurons

and muscles such as the heart. In this section we discuss several possible

mathematical models for X, the associated measure F and the self-adjoint con-

traction semigroup T t on L 2(X,I) which models the decay of voltage potentials

on X in the absence of arriving excitatory and inhibitory impulses. We will

also consider classes of impulse arrival-rate measures { n} for which we

can verify the hypotheses of Theorems 2.1, 3.1 and 3.2 and so construct solu-

V! tions n to the equation

d t t dt t

n
(see Section 2) and verify that n converges weakly to a Gaussian process ,.

First we consider in greater detail the three examples introduced in

Section 2. It is convenient to state and prove the following useful lemma.

Lemma 4.1 Let T be a semigroup on H = L 2(X,r) satisfying Al and also
t

-r(4.1) c 1 = sup sup Ij (x) (l0X)
x J

for some r < . Then any o-finite measure 11 on]RxX satisfying

(4.2) c2 = 2a2(dadx) <
FxX

also satisfies assumption A2.

Proof: From (4.1) and (4.2) it follows that

Q(Wi) = fa (x)p(x)p(dadx)

satisfies

IM( 1,k) fa 2 Cl(l+X) r cl(l+Xk)r(dadx)

.4l

-,'.-q- . .•.
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2 r r= Cc2 (l+X (+, k ) and hence

for finite sums = -

[Qqb b l= Ij *[J)q[Ibk] QCbk

2 r12<5c C211 10ij 1l+(j0 r 2

2] l ). 2(r+rl) -2rl)!5 Cl2( b j2(+Xj)) {+j

2 2

=c2c201[I1[
1 21 r+r

By Fatou's lemma the same bound holds for all c ( D, so Q is continuous.

Example 1. X consists of a single point.

Without loss of generality we may take r(X) = 1 and identify each (V '

with its value O(X) EIR, in other words, we identify 0 with R. Any contraction

-tL
semigroup Tt is of the form Tt b = e q for some L EIR, and each it is one-S

dimensional with 11.1Is = 1(X)Il (l+L)s. Each measure p onIRxX is determined

uniquely by its marginal pl(A) ;f p(dadx) on the Borel sets in IR, and sat-
Ax X

2
isfies A2 if and only if f~a 2l(da) < . For measures of the form(2.8)(with

p < - and q < -"), we have

(4k k 21 k.
(4.3) 1 (A) f l(a) + 1  (-

1 = e A e 1 Al 1A-i

k=l 9.=l

where fk = Xe)and f' = i(X), and A2 becomes

(4.4) fkeak) 2 + f(a -')2 < 0

This is trivially satisfied when p and q are both finite.

". °...%. .... ... .. ... ... •. .. . . "
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n
A sequence W of measures on]RxX satisfies conditions (iii)-(iv) of A4

if and only if, for some number a2 > 0, the marginals 1 .) = 1n(-xX) satisfy

2 n 2
(4.5) fa 11 (da) a 2

fa 4 11 (da) + 0

as n =; for jn of form (2.8) a sufficient requirement is
fk,n. k,n. 2 r k,n. Z,n.

(4.6) e (ae )  + Yt i (a i  a
k

max{ak n , a. m _ 0
k, 9e 1

as n 0. In either case, for any sequence mn } c IR there is a sequence of

unique (in distribution) generalized Poisson processes X tm + fa
t IRx(0, t] n

(Nn (dads) -I(da)ds) as in (2.4), satisfying (2.5) and, for each sequnce0

- of square-integrable random variables, a unique (by Theorem 2.2) solution n

4.* to the stochastic initial value problem

n n
"'a

-0. =

If p n is of the form (2.8) then Xn may be represented as
Pn qn

n n~
n.._:" n , -n, k,n k,n R, ,n ,,n

(4.7) X = t mn-m) + I akn Ne (t) - Ni(t)
t.k=l Na-

whr k,n NtJnk =whereNe N 'n(k,k=1,2 ...) are independent Poisson processes with variance.!k., 9e n '
parameters fk' and f. and

-n fk-n knn n
(4.8) nm = k e 1kna

k

assuming the latter sum converges; for this it is sufficient that each

".- ... . .. .. . , - . ... .. . .- . -. '.- . . .. a-... . . - .. . - . .. . . . .
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summation extend over finitely many terms.

If the sequence Imn} converges to a finite limit m and if {,n converges
0

in distribution, then Theorem 3.2 asserts that the sequence of ('-valued pro-

cesses { , converges weakly to an Ornstein-Uhlenback process C. with diffusion

rate a2 (given by (4.6)), relaxation rate L and an additional drift coeffi-
-.,;-.

cient m.

In particular, assuming pn' q to be finite and taking m = m we obtain,

in a slightly more general form, the main result of [141.

Example 2. This example includes the cases treated by Wan and Tuckwell and

by Walsh [21, 201. Let X be the interval [0,b]. If X represents the membrane

of a neuron, it is natural to consider the contraction semigroup {T t  whose

generator -L satisfies

L4~ 14 +8 6Af

for smooth 0 with compact support in (O,b); 6>0 represents the rate of ion

diffusion within the neuron, 80 the rate at which ions leak across the Membrane.

In the cable equation approximation to the electrical properties of neuronal

-l 2membranes (see [ 7 ], for example), 6 = (CM)(R0+Rd) cm /sec and

(C8 = (CMR) sec where R0 and R are the external and internal longitudinal
resistances (in ohm/cm), RM the membrane resistance per unit length (in ohm-cm)

and CM the membrane capacitance per unit length (in F/cm). If we select Le-

besgue measure for r and impose Neumann boundary conditions at 0 and b (i.e.,

seal and insulate the ends) then L and {T }are each uniquely determined and
t

2
self-adjoint on H = L (X,r). L has eigenfunctions {I.} with associated eigen-

values {X.) given byJ

k -"" -,"................ . .....-":.-: - : " .- - : - ,_ .. . -...,-.,". . . _ •::: .
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0 (x) = C. cos(iTjx/b) j=0,1,2...

.X = 8+ 6(wj/b)

AI

If we set CO  b and C. = 2 b for j a 1 then {0 is a complete orthonormal

set in H. Assumption Al is satisfied for any r1 > ; for example, r,=l yields

o.x I = b ((8+1)6) - coth(b(8+1) 6 - ) + I)
-. 9o NJ

By Lemma 4.1 (with r=O), A2 is satisfied by any measure v on Rx[0,b] satisfying

(4.2); for sufficiently smooth m, we may take r2 = rI in (2.3). With the choice
2o"

of X, H and T as above consider the Wan-Tuckwell model which assumes white
-4 t

noise current injection at a single point x0 e [O,b], [ 21l. The impulse

arrival-rate measures p are taken to be of the form

n(AxB) fk,n k,n m-,n - ,n..
(4.9) = [A f e (aI A + A(-a i  ' B(x0).

k=l e

(4.9) is a special case of (2.8). Here and throughout this example we will

assume p, q < o and independent of n. We have

Qn (,) = O(Xo)p(x0) 20n

p.

where 0 and eP 0 and

2 k,n k,n 2 i n ,n 2
(4.10) an f e (a2e J + 1i a "

Under the assumption

2 2 2
(4. 1la) Iim 02= 0 (05 a < 0),

n

and

k,n tin
(4.11b) lim max{ak , a 0,

n-' k,L e 1

. . . . . . . .
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the assumptions (A4) (iii)-(v) are easily seen to be satisfied with

(4.12) Q(*,P) = *(x 0 )iF(x0 ) a2

The white noise processes Xn then have the representation

n n -n ak,n O(x)Nk,n
(4.13) X t() = t[m m -(0)] + I a e ds,dx)

k=l Xx(O,t]

i :" tZ,n NZ,n
- a. f O(x) N i (ds,dx),
1=1 XX(O't]

k,n 9.,n
where N e N i are independent Poisson measures with variance measures

respectively given by f V(dx) and fz v(dx] with v(B) = (x) in.:..e - B-o 0

(4.13) m is given by

(4.14) ivn() = yn (xo )

with
n fk,n ak,n - ,n aI,n

k=l e e 2 1

n
Consistent with the Wan-Tuckwell model, choose m (-) = m(-) and assume that

(4.15) lim Y = Y, y<- exists.

n

Furthermore, assume t0 to satisfy A4 (i). Under the assumptions (4.9)-(4.11)L? 0

and (4.15) it follows from Theorem 3.2 that the processes E n satisfying

n n n
d t dt + dXt (t>O)

with n as above, converge weakly to the 4'-valued Gaussian process t. given

by

(4.16) t= t

L:':'" '" '-'. .. .. - " "' ." "-"'- . .. .-' -"" ' •' " " -""-

I . • . - .. . - • • , . - , . . . • -. . - .- . . . - , " - . . , • . . . . - • ,
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The real-valued process iro satisfy the stochastic differential equation
[- + ~(Xo)ldt + ao ~(Xo) Idwj

(4.17) d4 = [- + .YO'..
t t Y0X)d 0 oI.x)dt

with initial value 0. Each wi is a standard, real-valued Wiener process.
0*

Equation (4.17) is equation (25 ) obtained by Wan and Tuckwell in [21 1. We

note, however, that.in [21 p and q are both taken to be equal to 1. As a

consequence of Theorem 2.3 it also follows that the series in (4.16) converges

uniformly in 0 < t < T in the H topology where q > max( ,-r3).

In their paper Wan and Tuckwell briefly comment on an extension of their

model in which the impulses can arrive at different points of X, i.e., instead

of all the impulses arriving at a single point x0, there are distinct points

k z
x (k=l,...,p) at which excitatory impulses arrive and distinct points x.

(X=I,...,q) which receive only inhibitory impulses. The authors state that

the locations of the excitatory and inhibitory synapses "do not differ by

very much".

.4'4 In place of (4.9) we now must take

9)1 n k,n k,n k Z ftn 1 Z,n z
(4.9)' l1n(AxB) = j f 1 (a )l(xe) + f, A-a (X

k=le A e B e IA'i IBi

Then

Qn(*,,)=kl fk,n (kn)2*(xk)*(xk) + =In n 2 z

k=l e e e e 21

and the corresponding m' () is of the form

(4.18) mn(*) = j fk~ ak 0(x) - f.L,n (.)
-i fk,n k,n Ok n X£n

k=l e e e I i  i

n --n fl
As before, we will take m = m in the choice of the noise process Xn . The

assumption

AL.
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4.8

Qn(¢,i) + Q(,P) for all 0, in 0

leads to the existence of the finite limits (assumed positive)

(4.19) &e  lim f ( (a, 2 for k=l,...,pee e .filmfrkl

and t=l,...,q. We then have

QM) =) cOX M(x)%+O1(x )"

k=l e e e

This assumption and the additional condition (4.11b) verifies (A4) (iii)-(v).

(A4) (i) takes the form

(4.20) lim m-n(0) = m( ), finite for every e (P.

However, conditions (4.19), (4.11b) and (4.20) are incompatible unless

k k(4.21) p f q and x= x
Se 1

(4.21) can be easily shown by using the fact that C functions with compact

k in2.support belong to 0. Choose such a function 0 with (x ) = I, *(x ) = ,(x. = (

k
for all 2I 1,...,q and mfk, where xe is a point not belonging to the set

z ,l hn(.0 ~le fk~n kn{x, Then (4.20) implies f a a finite limit as n - oo
1 e e

which is impossible in view of (4.19) and (4.11b). Thus all the points xk

belong to the set {x Similarly, all the x belong to the set

{x, k=l,...,pl and thus the two sets are the same. Renumbering the points

"" £k k
{x_} if necessary, we have (4.21). Writing x = xi Xk (k=l,...,p) we have

1 . k k1.. .)w.hv

k k 2
Sk= ai) (xk)

and

M Y ~k 0(x)
k=1 k)

V.

A-"
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k fk~nk,nfor all e £ * where yk = lim[f ~n a _ fkn ak ' n ]. Note that the argument
__ e 1 1

just given holds for any X and 0 which contains functions that distinguish

points of X. The stochastic differential equation for the processes C corre-

sponding to (4.17) now takes the form

(4.22) dcj = [-X. Q + mr(O.)]dt + , dw)
SJt t

with initial value and w) a standard Wiener process. The 0"-valued process
is given by (4.16) with j satisfying (4.22). The processes En satisfy an equat-

tion very similar to that obtained in the simpler Wan-Tuckwell model with white

noise current injection at a single point. Equation (4.22) differs from (4.17)

only in the constants mn(l and J'Q( j.,).

Thus if Fo is a solution to the initial value problem

d t  -L' t dt dXt

=

in which X is a generalized Poisson process with only very small jumps, then

(, is close in distribution to the solution C. to the initial value problem

d t = -L'tdt + dW
t t

0 = 0

If W is a Gaussian 0'-valued process with the same mean and covariance as

and if 0 is a Gaussian 0'-valued random variable whose distribution is close

to that of C0. This supports the use of Gaussian methods to study the approx-

imate distribution of the process F., including first-passage times and re-

lated functionals (e.g. in [21] and [181).

: ,'~~................... ... "..'..""..........
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In [20 ] Walsh considers a model in which X, r and {T t  are the same as

in the Wan-Tuckwell example discussed above but the choice of p is more gen-

eral, i.e., p is determined by a finite measure v on X and a Markov kernel

K via the relation

p(AxB) = f K(x,A) v(dx), A c j, B c X.

B

The kernel K(x,da) is the regular conditional probability distribution of the

size a e iR of impulses arriving at the site x E X, while the measure v(B)

is the overall arrival rate p1JxB) of impulses of all sizes at points xc B c X.
The requirement made in [20 1 that f[_a 2K(x,da) + (fa K(x,da))2 ] v(dx) <

entails that 4.2 is satisfied so that A2 holds and Theorems 2.1 and 2.2 apply.

Incidentally, Walsh represents T through its integral kernel G(x,y;t) ="" t -a

Yj e j _ (x) _ *.(y). The series converges uniformly in x and y by Al. Walsh

defines a two-parameter stochastic process V(t,x) which is an integral kernel

for our

t[0] = f 0(x) v(t,x) r(dx)

and our notation is related to his as follows:

0o['1 = f o(x) vo(x)r(dx),

= f o(y) V(ty)Ir(dy)

f 0(y) f vo(x) G(x,y;t)r(dx)r(dy)
x x

t

+ f 0(y) [f f G(x,y;t-s) F(dsdx)]r(dy):,,;X X 0 ''

f[f G(x,y;t)o(y)dy] v0 (x)r(dx)

+ f f[f G(xy;t-s)O(y)r(dy)] F(dsdx)
"' ~0 X •.,°

ox-
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= J[Tt (x)] v0 (x)r(dx)
X

+ ff [T t (x)] aN(dadxds)
t-s

0 RxX

.0[TtfI + f dX [T ts].
(0,t]

It is shown in Theorem 3.3 of [20 ] that, under certain conditions

(3.1 of [20 ]), almost all of the finite-dimensional distributions of a

sequence of such processes Vn converge to those of a Gaussian process V which

is an integral kernel for our Ct" Walsh's condition (3.1a) implies our A4 (iii)

while his (3.1b) is equivalent to our A4 (iv)'. It should be noted, though,

that our approach to the problem is different from Walsh's. Our results are

not concerned with the convergence in distribution of Vn(t,x) for fixed t

and x. On the other hand, Theorem 3.2 of our paper stengthens Theorem 3.3

of [20] by proving the convergence in distribution of the 0'-valued processes

II noC. in the sense that the probability measures in D(+R :(') induced by the C.

converge weakly to that induced by C.. The advantage of establishing weak

convergence of the '-valued processes is that it yields convergence in distri-

bution of continuous functionals of the paths, such as the first passage times,

t(0) = inf{t>O: t (0)>6} , = if {...} is the null event, (0 e 0 or Hq).

As already noted earlier, our approach to modelling the biological phen-.. 4

omena of interest as 0'-valued processes is very general as is clear from the

assumptions made in Theorem 3.1 on X, r and the semigroup {T }, and as will
t

be further illustrated in the next example and Section S. In these examples,

X will be a sphere in i 3 or a smooth compact manifold with or without boundary.

Such problems lie outside the scope of multi-parameter martingale theory. Even

4"I
b . . ..-
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when X Cd (dl), the semigroup {Tt} cannot, in general, be representcd by

a kernel given by a uniformly convergent series, the case treated by Walsh.

When the series makes sense as a distribution, one is naturally led to a

generalized stochastic process of the kind we have considered in this paper.

S

Example 3. X consists of a sphere.

2 3Let X = S , the unit sphere in , with Lebesgue surface measure I'. If

A denotes the spherical Laplace-Beltrami operator

ABc = (sin )-[L (sin 0) -+ (sin 6)-l 2-.

(where O,r are the Euler angles on S 2), then L = -8 + 6A B is self-adjoint

2
on H = L (XI) for any real numbers 8, 6. If 8 and 6 are positive then -L

generates a contraction semigroup T t } as before. This time the eigefuncti.ons

are the spherical harmonics Y~m (1=0,1,...; m=-L, .... ) with eigenvalues

A = 8+6i(t+l) for L, e-tx for Tt; we set

j Ym j=m+k(X+l) (i.e. £=aj 211 , qij-£2-i)

X. 8+6 9j D (9[jI +] 1)

Assumption Al is satisfied for any rI > 3, since

-2r -2r1

-2r -2r
< 48 1 +6 1/(rl-)

< Co.

The spherical harmonics obey the bound

2
sup lY~(X)2 = (2k+l)/4n

x

"I' _ .. ; "" "" ---. : " .; ""' "" e , . """ ." . " " . . .
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so {l.} satisfies

-~2 A-
sup sup IO(x)Il (1+X.) = (4w min(6,40))

J x

< 00.

* .% By Lemma 4.1, any p on IxX satisfying (4.2) also satisfies A2. For further

details the reader may consult [S ].

.4-.
-. 4 :

.°.

4 °-,

.. -

-,4

% '4

.4

'
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S. Applications Where X is a Compact Riemannian Manifold

Often the set X is intended to be the cell wall or surface membrane of a

neuron; as such it ought to admit a mathematical representation as a compact

Riemannian manifold of two dimensions. In voltage-clamp experiments the cell

wall is cut and the membrane potential voltage at the cut is held at some nre-

scribed value by the experimental apparatus; in this case X may be regarded as

a manifold with boundary.

The following theorem gives conditions on a manifold-with-boundary X, a

measure F on X, and a semigroup {Tt} on L2(X,r) which guarantee that assump-

tions Al) and A2) will be satisfied for any measure V satisfying (4.2), i.e.

for any noise process Xt admitting mean and covariance measures. See H6rmander

(rll, ch. X) for details about elliptic boundary systems on manifolds.

Theorem 5.1

Let X be a smooth d-dimensional compact Riemannian manifold with smooth

(possibly empty) boundary X and Riemannian volume element dF. Let L be a

2
positive self-adjoint operator on a domain DcH=L (X,) satisfying

i) C:(X)cV

-. ii) The restriction L of L to Cc(X) is a uniformly strongly elliptic
0 c

differential operator of order 2m> O with smooth coefficients.

iii) VCW 2m(X), the Hilbert space of those elements in H with 2m weak

derivatives in H.

Then L admits a complete orthonormal set {4j. of eigenfunctions in H4 with

eigenvalues {.} satisfying
J

* .. i) L4j =A.jq.

-2r1
iii) +.(1 <0 for all rl >d/4m

J,, J

iv) sup sup .(x)1 (lX <0 for all r>d/4m.
j x

V.
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Corollary 5.1

The contraction semigroup Tt genrated by -L satisfies Al. Any measure ji

on IR xX satisfying (4.2) must also satisfy A2.

Proof of Theorem 5.1

In case X is an open set in IR , Theorem 14.6 of Agmon Fl] gives i) and

iii); ii) follows from elliptic regularity (e.g. r1l Theorem 9.3) and iv) from

the Sobolev imbedding theorem (e.g. rl] Theorem 3.9). Completeness of {¢j}

follows from r2], Theoi:em 3.4.

The case of a general Riemannian manifold can be treated by extending

Agmon's proof to manifolds (using the Schauder estimates of r31) or by employing

a partition-of-unity argument as in H~rmander (r1ll Chapter X).

Remark 5.1

Frequently in applications L0 is given as part of an elliptic boundary sys-

tern L {1,0 ; t1 ... , £m (see rll], p. 254) in which 1 '..., Im are smooth dif-

ferential Operators of order < 2m on C (M). Theorem 5.1 will apply if it can

be shown that 10 is essentially self-adjoint on the domain D0 ={$E C(X):

has a continuous extension € to X=Xu$X, the restriction of T to 3X is C and

-0 on DX for 1-<j-<m}.

The second-order elliptic operators with Dirichlet or Neumann boundary

*conditions can be treated in this way.

ixamples 1, 2 and 3 of Section 4 are special cases of this, with d=0,

d- ], and d = 2 respectively. A more realistic example would appear to be that

in which X is the boundary of a 3-dimensional solid, so aX=0, and L=-A +
B

fi(x) is the sum of the Laplace-Beltrami operator and a smooth positive function

representing the trans-membrane conductance on a (not necessarily spherical) 2-

manifold X.

2 .
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5.3

Example 4.

Before simplifying to X=rO,bJ Wan and Tuckwell discuss a one-dimensional

.. finitely branching tree as a model for X:

Although this is not quite a manifold (it is not locally homeomorphic to V~ at

the nodes) it nonetheless can be handled by OUr methods as follows.

Represent X as the disjoint union of N compact intervals [0,b 1,.J. I~N I

and each function 0 on X as a family *1,"'* of functions on the intervals

satisfying certain boundary conditions. If J.i represents the (possibly empty)

set of indices for the segments emerging from the node at the end of the ith

segment, the appropriate boundary conditions are

1) .(b. =O(0) for each jE J., 1i5N

2) 0!(b. 0 !(0) for each 15i5N
j EJ.i

3) *{,(0) =0

The first of these guarantees that 0 will be continuous when regarded as a

function on the tree, while the second is an expression of Kirchhoff's Law

*forbidding any leak of current at the nodes. The third equation imposes Netimann

i

". ......

. . . . . . . . . . ..- --.=-
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(or "insulating") boundary conditions at the base of the tree; it or any of

the N conditions in 2) could be replaced by a Dirichlet (or "grounded") condi-

. tion. It is easy to integrate by parts and show that A i ' is self-adjoint

on the domain V of all CI functions on X satisfying the boundary conditions

above and possessing an absolutely continuous derivative and a square-integra-

ble second derivative with respect to Lebesgue measure r.

Theorem 5.1 still doesn't quite apply since the boundary operators are

non-local (on the disconnected set X), but its conclusion still holds true.
Co

In fact, -A +0 has a uniformly bounded complete orthonormal set of C eigen-

vectors and hence one can take r = 0 instead of just r > 1 in conclusion iv).

I.I

.. ,

. . ......... . * °4
*  
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6. Nonlinear Problems and Directions for Future Work

The stochastic behavior of the voltage potential investigated in the previous .

sections has the form of a differential equation

(6.1) d t = -L'E dt + dX
t t t

where L' :*' V $' is the adjoint of L. In our model L' is a linear operator and

hence {Tj} appearing in (3.17) is a linear evolution semigroup. This is

a decidedly unrealistic feature, for physically it amounts to the assumption that

the electrical properties of the membrane are unaffected by changes in the poten-

tial voltage across the membrane. Our model fails to take into account experi-

mentally observed features of certain neurons, for instance the following:

(a) As the cell membrane is progressively depolarized, the postsynaptic poten-

tials (inhibitory as well as excitatory) eventually become reversed in sign.

The reversal potential would introduce one type of nonlinearity in the model (see

[21])

(b) At least in some cells (such as sympathetic ganglion cells, see [4],

p. 135) the sizes of the postsynaptic potential impulses are dependent on the

state of depolarization of the membrane potential.

It would thus seem that a model which better describes the physiological

process would let t satisfy an equation such as

(6.2) d t = a'dt + b'dXt

in which a' is a 0'-valued process adapted to AX t  (most likely a nonrandom,
t

nonlinear 0'-valued function of &t and bj is an adapted process taking values

in a space of functions from 0' to 0'.

We can replace X. by W. and E. by C. in (6.1) and (6.2) and seek to approxi-

mate the behavior of the process &t by that of a nuclear space-valued diffusion

t satisfying

(6.3) d t = ajdt + bjdWt,

v.. .
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but the techniques used in the present paper do not suffice to prove the existence

and uniqueness of solutions to (6.2) and (6.3) or to prove the distributional con-

vergence of a sequence of solutions to (6.2) to the corresponding solution of

(6.3) when a' and b' are nonlinear.

Even the use of a semigroup (linear or not) {Tt I to model the evolution of

the membrane potential in the absence of incident impulses entails an implicit
assumption about the physical system which is unrealistic, namely that the state

of the system is unambiguously specified by giving only the membrane potential
itself at every point of X. It is known [13] that the local membrane behavior

depends critically on the concentration gradients of sodium, potassium, chloride,

and calcium ions, and that active transport of these ions as well as diffusion

play important roles. Recent experiments revealing the stochastic behavior of

ion-specific gates through cell membranes offer new opportunities for more

elaborate stochastic modelling of this important system.

Finally, the stochastic differential equation model with which this paper

deals and its extensions briefly indicated above have applications to other areas

of biology, e.g. to problems of emigration of biological populations. We hope to

investigate such problems in future papers.

, ... •.... . . " .••
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